
ON A BOUNDARY VALUE PROBLEM OF THE THEORY OF 

OSCILLATIONS WITH PARAMETER-DEPENDENT 

BOUNDARY CONDITIONS 

(OBODNOIIaUEVOIzADAOHBTBORII~ SORANIW 

u8LovIIAMI,zAvI6IAQ1~OI PAIiAmmu) 

PMM ~01.30, @ 6, 1966, pp. log8-no2 

L.I.BALABUKH and A.G.MOLGHANOV 

(Moscow) 

(Received April 5, 1966) 

A homogeneous second order differential equation with homogeneous boundary 
conditions dependent on the parameter, Is Investigated. Such an equation Is 
obtained in the course of solution of the problem of characteristic oscllla- 
tlons of an Ideal Incompressible fluid In an elastic vessel, when the method 
of separation of variables Is used. We prove the completeness of the system 
of elgenfunctlons of our boundary value problem and we derive the expansion 
of an arbitrary, plecewlse-continuous function Into a series In terms of 
these elgenfunctlons. 

1. Given the boundary value problem 

%+h%=O x=0, (Ao+Al).“+&~4)~=y; 2=1, +y (1.1) 

we have to find the elgenvalues 1. the elgenfunctlons Y.(x, X) show 
that the set of these elgenfunctlons'ls complete, and construct the'expan- 
slon of an arbitrary, plecewlse-continuous bounded function y(x) Into a 
Fourier series In terms of y,(x, X) . 

2. To solve the above problem we shall, following Cl], first consider 
vibrations of a string 

a2Y P a2Y =-J 
aE"--Tatt (2..1) 

with specially chosen boundary conditions 

E=O, A,,‘--; a$+ A&& $=y; E=l, B’!!Ly 
at (2.2) 

Here y Is the deflection of the string, 
po+nts o; the string, p Is the linear mass, 

5 Is the coordinate of the 

AI > Aa and B' are COnStadS. 
T Is the tension, and AO’, 

It Is easily seen that-the problem of characteristic vibrations of such 
a string reduces to the boundary value problem (l.l), If we assume that 

t x=--, ?&,2_P~~2 ) A,,zAo’, a,=+$ A,=+ B= F (2.3) 
L 1 1 

Here UJ Is the characteristic 
conditions 

frequency of vibrations. Given Initial 
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t = 0. y z-7 0, z =f(F) (2.4) 

we obtain from (2.1) and (2.4) 

&J t=o, -&=o, a”y __ T d”f 
dr? - FdT 

(3.5) 

3. kt us apply Laplace transformation to (2.1) and (2.2), taking the 
Initial conditions (2.4) and (2.5) Into account. This will give us 

d2Y ps" Yz+(~) --L 
df" T 

(3.1) 

f=O, (Ao’- AI’S2 + Az’sq !g + (Al’ - SZA;) -g - $ Ai ;+ = Y 

5= 1, B’dYzY 
dC 

(3.2) 

where Y(<, 8) IS the transform of ~(5, t) . Putting wa- - sa and changing 
to the dimensionless coordinate x , we obtain as a result 

z fh2Y= -$_j(z). (3.3) 

c.7. (h) f- ‘4 _EL 
‘dx= 1 =y s(h)=Ao+A1h2+ A& 

c2 (A) = A1 + Asas 

Let us represent 
Isthe solution of a 

with homogeneous boundary conditions 

x=0, Cl (h) ds =Y,; x=1, BdY --L3Y1 
dx 

while Y, Is the solution of a homogeneous equation 

x= 1, Bdti=Y 
dx (3.4) 

the general solution In the form Y - Y,+ Ya where Y1 
nonhomogeneous equation 

(3.5) 

(3.6) 

with nonhomogeneous boundary conditions 

x=0, cl(h)d!!&Y,,-!.$ cz(A)~-A2$&; 
i 1 

x=1, B’s=Ya (3.7) 

We then obtain 

ylAC!- 1 
T 2h he1 (A) (cos h + Bh. sin h) - Bh. cos h + sin h 

X (3.8) 
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-5 f(6) 

1 

cosh(l+s-~)d~+ ‘f(~)cos~(l--2- 
s 

CJag -i f(5)cos(~---z+6)4 + 
x 0 0 

+Bh -l f(5)s’ni(l+o-5)d’+ji(S)sinhoai- 
1 s 

X 0 

-5 f (5) sinh(l-z+c)dc 
I1 

,-,lz h [Bh cos A (1-z) ” sin h (I - r)l [~a (h) (df /W,,. - A2 (@f / d~&,l 
Yz=-+-- 

Th heI (h) (cos A, + Bh sin h) - Bh cos h + sin A 

t3 9l 

4. Function Y = Y1+ Y, is a meromorphlc function of a complex variable 
1 , simple poles of which are given by 

kc1 (A) (cos h + Bh sin h) - Bh cos h + sin .X = 0 (4.1) 

The above equation also yields the elgenvalues of the boundary value prob- 
lem (1.1). Equation (4.1) has an enumerable lnflflty of real and finite num- 
ber of Imaginary and complex roots. Real and Imaginary axes of the complex 
plane A are the axes of symmetry of these roots. 

It can easily be shown that the expansion of Y into simple fractions is 

Y(% h)=C 
resX Y(2, h) 

&m-k (4.2) 
Cm) m 

Summation In (4.2) is performed over all poles of the complex plane A 

a reshmY (CC, h) = - p$ D1 + L, [cz (LJ(df /W,=, - Az (w / dti)_~ 
%l wz + h,” [cz (A,) + h,2A2]l Ymtx) 

( s 
D1 =l f (6)Y, (6)4, 

1 
(4.3) 

D2 = ' ym2 (f) d5 
s 1 

0 0 

Here g.(x) Is the elgenfunctlon of (1.1) corresponding to the elgen num- 
ber X, . 

By virtue of the symmetry of the elgenvalues X, with respect to Imaginary 
axis of the complex plane 
slon (4.2) assumes the form 

A and alnce res_XmY (2, A) = - resA,,,Y (2, J.), expan- 

(4.4) 

where the summation Is performed over the poles of the right-hand semi-plane 
X ,lncludlng the positive part of the imaginary semi-axis. 

5. Applying to (4.4) the Inverse Laplace transformation and taking into 
account the faet that h2 = - @la J T) sa, we obtain 

Y (z~ t)= - (P-$-)“z~J 2h, reshmY (r, h) sin [ (_T )‘” h,t] 
m 

(5.1) 

In accordance with the Initial conditions (2.4), we have 

f (x) == 2 
Di + L [G (bn 1 (df / W,=, - AZ (d3f / d+c=ol 

Dz + I,’ 1~ (A,) + b.2AJ 
y 

m 
tzl 

(5.2) 
Cm) 
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Thus we have shown that the system of eigenfunctions of the boundary prob- 
lem (1.1) Is complete and that the expansion of an arbitrary function S(X) 
Into the series (5.2), Is unique. 

6. To Illustrate the application of obtained results, we shall consider 
a plane problem of hydromechanlcs. It will be a problem on small, axlally- 
symmetric, characteristic oscillations of an elastic Inertialess frame with 
an Ideal Incompressible fluid In the absence of gravity (see Flg.1). Let0 
be the velocity potential of the fluid, p Its pressure, p Its density, 
w1 and wa the deflections and let E, and E, be the flexural rlgldltles 
of the bars 1 and 2, respectively, 
Indicated In the figure. 

Positive directions of w1 and wp are 
We have the following equations of motion of the 

fluid 

and the boundary conditions 

x=0, !!!=o; ZZZQ 

y=o a@ -. 
’ ay=w” y=b, CD=0 

(6.1) 

Fig. 1 
Here and In the following, a dot 

denotes dlfferentlatlon with respect to 
time. 

Equations of motion of.the bars are 

and their boundary conditions are 

x = 0, 3W,. @w’ _ 0. 
z=w-' 2 = a, u;;= 0 

y=o, w;1’ = 0; y=b, 
LPWz 

dy’!= 
a3w3- _ 0 
__- 

3Y3 

The velocity potential of the fluid satisfying part of the boundary con- 
ditions (6.2), can be written In the form 

CD zz A, dh, (It - y) cos h,x + 2b pshpkx Sin pk (b-y) J Sin Ot (6.5) 
cm) UV 

Here, X, and cos 1.x are the elgenvalues and elgenfunctlons of the fol- 
lowing boundary value problem 

d~+h2X=0, x=0, d$=o; z = a, ,f31~54~X= po2X 
dx 

while uk and sin pk(b - I/) are the elgenvalues and elgenfunctlons of 

y=o, EIIp4d$ =-p&Y; y=b, Y=O 

We shall utilize the method first proposed by Lelbenzon In [2], to obtain 
the conditions of simultaneity of velocities of motion of the fluid and the 
elastic vessel. We shall consider pressure of the fluid as an external load 
on the vessel. Solving the equations ofZ forced vibrations of the bars (6.3), 
we find 
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ma wa’=- - 
EIz C 

Dl ik$+ D&y+ Dg(b--y)+D4+ 

+x Am *MA,,, (b - y) + 2 Bkd* sin pk (b - y)] (6.7) 
(ml W 

Here C, and D, (j - 1 2, 3, 4) are constants of integration. Functions 
of time are, in (6.6) and 16.7) and subsequent equations, neglected. 

Inserting the velocities of deflection of bars (6.6) and (6.7) into the 
boundary conditions (6.2) and taking into account the equations defining the 
elgen numbers X, and ur , we obtain the following functional expressions: 

Cl .$. + Ca $ “-?- Cg + C4 = 2) Am [s L,,p&,,b ---s-j cos ?w,,,x (6.8) 

D1 (y+ Dr(k$+D8(b-y)+D4= 

which, together with former 
all PL in terms of D, (J = 1, 2, 

yield all A. In terms of C, 

(6.7’) with the boundary conditions 
Substituting these Into (6.6)%d 

'being satlsfled, we can obtain the 
system of linear equations homogeneous in C, and D, . By equating the 
determinant of this svstem to zero. we obtain the freauencs eauation which 
will contain Infinite-sums of rapidly converging series. heir strong con- 
vergence can be explained by the fact, that no differentiation which would 
weaken the convergence, Is performed In the course of solution of the problem. 

Asymptotic values of characteristic frequencies can be found from the 
solution of the following system of transcendental equations: 

EZ 
2(ha)5tda + i= 
p&l5 

~(hb).cO*hb--l=O (6.10) 

The above system defines the distribution of asymptotes of a moromorphic 
frequency function corresponding to the frequency equation of our problem. 
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