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A homogeneous second order differential equation with homogeneous boundary
conditions dependent on the parameter, 1s investigated. Such an equation is
obtained 1n the course of solution of the problem of characteristic oscilla-
tions of an 1deal incompressible fluld in an elastlc vessel, when the method
of separation of variables i1s used. We prove the completeness of the system
of eigenfunctions of our boundary value problem and we derive the expansion
of an arbltrary, plecewlse-continuous function into a series in terms of
these elgenfunctions.

1, Glven the boundary value problem
d%y 2, _ 2 o .. =1 B.dl_—: 11
W“l’}vy——o z=0, (Ao+ A\ —I—Az}v)%—y, r=1, iz y (1.1)

we have to find the eigenvalues )\, , the eigenfunctions y.(x, ) , show
that the set of these elgenfunctions 1s complete, and construct the expan-
sion of an arbitrary, plecewise-continuous bounded function J{(x) into a
Fourler series in terms of y,(x, 1) .

2. To solve the above problem we shall, following [1], first consider
vibrations of a string

Py P % _g 24
I T (24)
with speclally chosen boundary conditions
, , 02 , 04\ Oy , Oy
=0, Ay — Ay — + A )\ L=, =, B L= 2.2
€ (o 16t2+ 26t4)aé, Y g 3 y (2.2)

Here y 1s the deflection of the string, & 1is the coordinate of the
po}nts of the string, p 18 the linear mass, T 1s the tension, and 4,’,
A,7, A5’ and B’ are constants.

It 1s easily seen that:the problem of characteristic vibrations of such
a string reduces to the boundary value problem (1.1), if we assume that
2]2 Ay AT AST? B’
7\,228(2__, =_0, A, =21 Ay =22 B—= —_ 2.3
T it i 1 913 ’ p215 » ( )
Here w 1s the characteristic frequency of vibrations. Given initial
conditions
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gy
t=20, ==0, L = R4
| y B (&) (2.4)
we obtain from (2.1) and (2.4)
t=0, Fy _o %y T &f (2.5)
a o T Tp ded

3. Let us apply Laplace transformation to (2.1) and (2.2), taking the
initial conditions (2.4) and (2.5) into account. This will glve us

a?y ps® v, ___ P :
W—TY_ 71 3.1)
' af T 4.8y

E=0, (A —Aystt Aysh) ‘% (A —sa) 5L — a4y O
_ LAY
E—1, B o= (3.2)

where Y(£, 8) is the transform of y(g, t) . Putting w?= — s® and changing
to the dimensionless coordinate x , we obtaln as a result

a2y ___pB
= +AY = - f @), (3.3)
_ ay 2 df d3f__ c1 (M) = Ao + A1A2 4 AzA8
=0, e1(A) = - I AL — A, =Y
z e ( )d:c + 7 [cz( )d:c Zdﬂ] (cz(h)zAl—i—AgM )
— ay
z=1, B =Y (3.4)

Let us represent the general solution in the form Y = Y, + Y, where VY,
is the aolution of a nonhomogeneous equatlon

d2Y1 9 Plz
pullioll Y =— "
== (@) (3:5)
with homogeneous boundary condltions
2=0, oLy, o=1, BWYL _.y, (3.6)
dx dx

while ¥, is the solution of a homogeneous equation

@Yy | ey, o
dx?

with nonhomogenecus boundary conditions

_ &Yy _y _ ol df _ g B Ve _y.
$—O, CI(A‘)—&T— Y2—r -—T,—[CZ()V)% ZEFJ, x_ir BW Y2 (37)

We then obtain

__pit 1 1
Y“’T‘ﬁxcl(x)(coswrmsinx)_Bxcosx+sinx X @8
1 1
x{mm [5f(c)sinm+x—@)dc+y(c>sinx<1—x—c)dc+
x 0

x 1
+§ f(:)sinx(i—x+c>d:—m(\' f (&) eos A (1 +2—L)ydo+-

0

+ISf(§) 0057»(1—=¢—C)d§+§ f(E)cosh (1 —z+ E)dC)] -
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1 1 3(;'
—S f(é)cos?»(i+x——C)dC+Sf(C)cos7v(1—x—C)dc —S (&) cos(d —z+L)dg +

x 0 0
1

1
+Bh[—g f(C)SinK(l+x——§)d§+3j(§)3in;\'(1_z_€)d§_

0

X
—5 r<§>sinx<1—z+c>dc]}
i}
v _pit h[Bhoosh(1—a)—sinh (1 —a)lea () (@ | d)umg — s (BF [ d)eg] 3,
R Ner (h)(cos A+ BAsinA) — BAcos A+ sin A

4, PFunction Y = ¥+ Y, 1s a meromorphic function of a complex variable
A , simple poles of which are given by

Acy (M) (cos A - BA sinA) — BAcosh + sind =0 (4.1)
The above equation also ylelds the eigenvalues of the boundary value prob-
lem (1.1). Equation (4.1) has an enumerable infifity of real and finite num-

ber of imaginary and complex roots. Real and imaginary axes of the complex
plane A\ are the axes of symmetry of these roots.

It can easily be shown that the expansion of ¥ 1into simple fractions 1is
res, Y (z, A)

(m) A—hm
Summation in (4.2) is performed over all poles of the complex plane A

(4.2)

res, Y (s, %) = — 0L D1 Aml (n)(df/do)y g — A (P [da)iol
m T 2hm D2+ A2 [c2 (M) + Ap2Ae]} m

(4.3)
(Dl =]Sf(§)ym (©dg, D =§ym2(€)d§>
0 0

Here y,(x) is the eigenfunction of (1.1) corresponding to the eigen num-
ber A,

By virtue of the symmetry of the eigenvalues ), with respect to 1maginary

axis of the complex plane X and since res, Y (z, A) = — res, Y (z, A expan-
sion (4.2) assumes the form wmY (2, 4) ¥ (2 A,

2hpres, Y (z, A)
Y (e )= :Tm_‘_
(m) —Mm

where the summation 1s performed over the poles of the right-hand semi~plane
A ,including the positive part of the imaglnary semi-axis.

(4.4)

5. Applying to (4.4) the inverse Laplace transformation and taking into
account the faet that A2= — (pi?/T) s®, we obtain

y(z, t)=— (p%)l/z %} 2Am resAmY (2, A) sin [(F%; )l/' kmt] (5.1)

In accordance with the initial conditions (2.4), we have

@ D1t b [e2 () (df [ d)_ g — Ap (3F / d2%),_]
f (x) o E D, + 7~m2 ["‘2 (km) + )"7'12‘42]

(m)

Ym (®) (5:2)
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Thus we have shown that the system of eigenfunctions of the boundary prob-
lem (1.1) 1s complete and that the expansion of an arbltrary function [(ux)
into the series (5.2), 1is unique.

6, To 1llustrate the application of obtalned results, we shall conslder
a plane problem of hydromechanics. It will be a problem on small, axially-
symmetric, characteristic oscillations of an elastic inertialess frame with
an ideal incompressible fluld in the absence of gravity (see Fig.l). Let ®
be the velocity potential of the fluld, p 1ts pressure, p 1ts density,
w, and w, the deflectlions and let £, and F, Dbe the flexural rigiditles
of the bars 1 and 2, respectively, Positive directions of w, and w, are
indicated in the figure. We have the following equations of motlion of the

fluid
Y 02D RO o0 ,
== T gor tgE T P=e G
V| i it 7 4 and the boundary conditions
—‘—- S — :L‘:O, @_: ) *—=a, -——-(29_—__—71)2'
e dx oz
7 ! z y=0 P . —b, ®=0 6.2
! P ll}a ! Yy , ay 1, Yy ’ ( 2)
Here and in the following, a dot
Fig. 1 denotes differentlation with respect to
time.
Equations of motion of, the bars are
6%’ 2 04wy Y 9
ElL axu;l =[p ]1/::0; El, i =[P leq (6.3)
and thelr boundary conditions are
T = O, 9wy = aéw} =0, Tr=aqa, wl' =0
oz dad
0@1" — '3wz' EIl 52101' :Elg 32w?']
dz N=a By y=0 0z X=q 3yg Y=
. Oy’ PBw,’
=0 s =0 y=>b, 2 2 =0 6.4
Yy » wy Yy dy" ay3 ( )

The veloclty potential of the fluld satlsfying part of the boundary con-
ditions (6.2), can be written in the form

0= [Z A sinhd (b —y) cos Az - Z Byeoshpyx sin py, (b ——y)] sin wt (6.5)
(m) (k)

Here: A, and cos A,x are the eigenvalues and eligenfunctions of the fol-
lowlng boundary value problem

azX 2 dX dX _ o2
PED +7\.X O, x , Tz x a 2;y iz P
while u, and sin Ux(b — y) are the eigenvalues and eilgenfunctions of
iy +mY =0, y=0, Ellp‘lfll:—puﬂY; y=>b, Y=0
dy? dy

We shall utilize the method first proposed by Leibenzon in [2], to obtain
the conditions of simultaneity of velocities of motlon of the fluld and the
elastic vessel, We shall conslder pressure of the fluld as an external load

on the vessel. 8Solving the equations of forced vibratlons of the bars (6.3),
we find
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2 2
o= oo g ot
sinh )., b sinpyb
—{—2 Am—x—%"—coskma:—{—ZBk U;k ooshp,kx] (6.6)
m M
(m) (k)
wi=—Er D T+ D CSY 4 Do~ 9+ Dot
c0S Ap,a \ _ coshpya |
+3) A4 5 w0~ + DB s 6 —0)] 62)

(m) (k)
Here (¢; and D, (j =1, 2, 3, 4) are constants of integration. Functions
of time are, in (6.6) and (6.7) and subsequent equations, neglected.

Inserting the velocities of deflection of bars (6.6) and (6.7) into the
boundary conditions (6.2) and taking into account the equations defining the
eigen numbers A, and u, , we obtain the followlng functional expressions:

Cy 1(:— +C: -%2- p‘:ll- Csx -+ Cy== 2 Am [gp_la;% Ameoshd, b —“.h;"vmb] €08 Amz (8.8)

m m

D, &= 4 p, O3 py b —y)+ Du= (6.9)

\ EI coshpza 7 .
== B.[_.?_ sinht;, @ — L1 ]smp, ()]
% k| oa? Wy ainhihy I k

which, together with former results, can yleld all 4, in terms of (, and
all p, in terms of D, (4 = 1, 2, 3, u;. Substituting these into (6.6) and
(6.7) with the boundary conditions ?@.4 being satisfied, we can obtain the
system of linear equations homogeneous in (¢, and D, . By equating the
determinant of this system to zero, we obtain the frequency equation which
will contain infinite sums of rapldly converging series. Thelr strong con-
vergence can be explalned by the fact, that no differentiation which would
weaken the convergence, 1s performed in the course of solution of the problem.

Asymptotic values of characteristic frequencles can be found from the
solution of the following system of transcendental equations:

Elr 0) waha 41 =-LLL (Ab)s comdb —1 =0 (6.10)
pwad pw2bd

The above system defines the distribution of asymptotes of a moromorphic
frequency function corresponding to the frequency equation of our problem.
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